

Fig. III-2. Hysteresis of B8₁ ≠ B31 transition in MnAs.

implies a d $\mu/dV>0$ in a critical molar volume range $V_t-\Delta V < V_t$, where V_t is the molar volume at T_t and $\Delta V/V\approx 0.025$.

(2) A first-order B8₁ \rightleftarrows B31 transition at T_c occurs only if the molar volume at T_c falls within the critical range. Further, the fact that the low-temperature phase is hexagonal, with a discontinuous expansion of the basal planes on cooling through T_c , demonstrates that there is a large, positive exchange striction in the basal planes if $V > V_t - \Delta V$ at T_c . This exchange striction has essentially disappeared where $V < V_t - \Delta V$.

Bean and Rodbell 12 have shown that a first-order transition can occur at Tc if

$$T_{c} = T_{o} [1 + \beta (V - V_{o})/V_{o}]$$

both the coefficient β and the compressibility are large, and there is a large ΔV at T_c due to exchange striction. Since T_c is proportional to $W\mu^{*2}$, where W is the Weiss molecular field and $\mu^{*2} \approx 4S(S+1) \mu_B^2$, it follows that

$$\beta = \left(\frac{1}{W} \frac{dW}{dV} + \frac{2}{\mu^*} \frac{d\mu^*}{dV}\right)$$

Bean and Rodbell assumed $d\mu*/dV=0$, and therefore required a large dW/dV>0. However, analysis of available data gives dW/dV<0 and

$$6 < \beta < 22$$
 for $3 \ge (\mu_8^*/\mu_{31}^*)^2 \ge 2$